
Ch 4: Program Comprehension

Part 2: Program Representations

Why Program Representations

❑ Original representations
• Source code (cross languages).

• Binaries (cross machines and platforms).
• Source code / binaries + test cases.

❑ They are hard for machines to analyze.

❑ Software is translated into certain representations before

analyses are applied.

3

Program Representations

●

●

●

Before we can reason about programs, we must
have a vocabulary and a model to analyze

Difficult models:

–Compiled binaries

–Source code

A good representation should make explicit the
relationships you want to analyse

Comprehension Tasks

During program comprehension, we:

- Explore the program code non-linearly

- Derive a variety of views of the program code

To focus on particular aspects

To remove irrelevant details

- Formulate hypotheses and search for evidence

- Link program constructs to real world concepts

E.g. var SAL refers to the salary of an employee

Many of these involve repetitive tasks that are more

quickly and more reliably performed by a software tool -

Types of Tool
- Software visualisation tools

Support browsing and exploration of the software

- Static analysis tools

Extract information from program code

-Dynamic analysis tools

Extract information from individual executions of the code

-Knowledge-based repositories

-Store knowledge about the domain, and

-Document the process of understanding

Program Representations

Static program representations

▪ Abstract syntax tree;

▪ Control flow graph;

▪ Program dependence graph;

▪ Call graph;

Dynamic program representations

▪ Control flow trace, address trace and value trace;

▪ Dynamic dependence graph;

▪ Whole execution trace;

7

Core graph representations for analysis:

1) Abstract SyntaxTrees

2) Control Flow Graphs

3) Program Dependence Graphs

4) Call Graphs

Program Representations

1) Abstract SyntaxTrees

● Lifts the source intoa canonical tree

form

for i in range(5,10):
a[i] = i * 5

8

1) Abstract SyntaxTrees

● Lifts the source into a canonical treeform

– Internal nodes are operators, statements,etc.

for i in range(5,10):
a[i] = i * 5

for

range =

[] *

9

1) Abstract SyntaxTrees

● Lifts the source into a canonical treeform

– Internal nodes are operators, statements,etc.

– Leaves are values, variables, operands

for i in range(5,10):
a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

10

1) Abstract SyntaxTrees

●

●

Lifts the source into a canonical tree

form Used for syntax analysis &

transformation:

for

i i 5

range =i
for i in range(5,10):

a[i] = i * 5
5 10 [] * 11

a

1) Abstract SyntaxTrees

Used for syntax analysis &

transformation:

- Simple bug patterns

–Style checking

–Refactoring

for

i i 5

range =i
for i in range(5,10):

a[i] = i * 5
5 10 [] * 12

a

2) Control Flow Graph

The most commonly used program representation.

It is widely used in program analysis, malware analysis,

testing.

A control flow graph (or flow graph) G is defined as a

finite set N of nodes and a finite set E of edges. An

edge (i, j) in E connects two nodes ni and nj in N. We

often write G= (N, E) to denote a flow graph G with

nodes given by N and edges by E.

14

Example of a Control Flow Graph (CFG)

if (x+y < 100)

s:=s+x+y;

else

d:=d+x-y;

}

1

2

3

4

5 6

7

8

s:=0;

d:=0;
while (x<y) {

x:=x+3;

y:=y+2;

Flow Graph Notation

 A circle in a graph represents a node, which stands for a sequence of one or
more procedural statements

 A node containing a simple conditional expression is referred to as a predicate
node
 Each compound condition in a conditional expression containing one or more

Boolean operators (e.g., and, or) is represented by a separate predicate node
 A predicate node has two edges leading out from it (True and False)

 An edge, or a link, is a an arrow representing flow of control in a specific
direction
 An edge must start and terminate at a node
 An edge does not intersect or cross over another edge

15

Program Flow Graph (Control Flow Diagram)

Sequential statement block
If C Then S1 else S2;

S1 S2

C

If C Then S1;

S1

C

Program Flow Graph (Control Flow Diagram)

While C do S;

S

C

Do loop:

do S1 until C;

S1

C

For loop:

for I = 1 to n do S;
S

I = 1

I <=n

yes

no

F

T

T
F

19

2) Control FlowGraphs

● Express the possible decisions and possible
paths through a program

cond = input()
if cond:
a = foo()

else:
a = bar()
print(a)

2) Control FlowGraphs

● Express the possible decisions and possible
paths through a program

cond = …
if cond:

a = bar()a = foo()

print(a) 19

cond = input()
if cond:
a = foo()

else:
a = bar()
print(a)

2) Control FlowGraphs

● Express the possible decisions and possible
paths through a program

– Basic Blocks (Nodes) are straight line

code

cond = input()
if cond:

cond = …
if cond:

a = foo()
a = bar()a = foo()else:

a = bar()
print(a) print(a) 20

2) Control FlowGraphs

● Express the possible decisions and possible
paths through a program

–Basic Blocks (Nodes) are straight line code
–Edges show how decisions can lead to
different basic blocks

cond = input()
if cond:

cond = …
if cond:

a = foo()
a = bar()a = foo()else:

a = bar()
print(a) print(a) 21

2) Control FlowGraphs

● Express the possible decisions and possible
paths through a program

–Basic Blocks (Nodes) are straight line code
–Edges show how decisions can lead to different
basic blocks
–Paths through the graph are potential paths
through the program

cond = input()
if cond:

cond = …
if cond:

a = foo()
a = bar()a = foo()else:

a = bar()
print(a) print(a) 22

23

2) Control Flow Graphs(CFGs)

●

sum
i =

=
1

0

while i < N:
i = i + 1
sum = sum

print(sum)
+ i

Language specific features are often abstracted away

2) Control Flow Graphs(CFGs)

●

while i < N

i = i + 1
sum = sum +
i

print(sum)

Example
sum = 0
i = 1

24

Language specific features are often abstracted away

sum
i =

=
1

0

while i < N:
i = i + 1
sum = sum

print(sum)
+ i

Example

2) Control Flow Graphs(CFGs)

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7,

8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4),

(3, 4), (4, 5), (5, 6), (6, 5),

(5, 7), (7, 8), (7, 9), (9, End)}

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7,

8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4),

(3, 4), (4, 5), (5, 6), (6, 5),

(5, 7), (7, 8), (7, 9), (9, End)}

Same CFG with statements
removed.

28

3) Program Dependence Graph (PDG)

● A Program Dependence Graph captures how

instructions can influence each other

Instruction X depends on Y…. if Y can influence X

- Nodes are instructions

- An edge Y→X shows that Y influences X

2 main types of influence:

- Data dependence

- Control dependence – influence through decisions

3) Program Dependence Graph (PDG)

Data dependence:

Where did these values come from?

Control dependence:

Which statement controls whether this statement

executes?

–– Nodes: as in the CFG

–– Edges: unlabelled, from entry/branching points to

controlled blocks

Data Dependence

X data depends on Y if

● There exists a path from Y to X in the CFG

Y

30

X

Data Dependence

●

f(z)

Y z = 5

31

X

X data depends on Y if

●There exists a path from Y to X in the C F G

Variable/value definition at Y is used at X

Data Dependence

●

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a
32

X data depends on Y if

●There exists a path from Y to X in the C F G

Variable/value definition at Y is used at X

Data Dependence

●

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …?

… = b + a
33

is this valid data

dependence?

X data depends on Y if

●There exists a path from Y to X in the C F G

Variable/value definition at Y is used at X

Data Dependence

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

?

… = b + a
34

● How about, is this valid data dependence?

Data Dependence

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

?

… = b + a
35

● How about, is this valid data dependence?

Data Dependence -Example

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3) while i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
36

Determine which statements influence which other statements? In terms of data control

Data Dependence

38

Control Dependence

● Recall:

● Control dependence captures how decisions influence

program behaviour.

● We need a way of capturing this via graphs....

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node toYpasses X

– strict, normal, & immediatedominance

X

Entry

...

39

Y

Control Dependence

X dominates Y if all possible program paths
from START to Y have to pass X.

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)DOM(6)= ?
40

what is dominator of 6

Control Dependence

Preliminary: X dominates Yif
● every path from the entry node toY passes X

– strict, normal, & immediatedominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
DOM(6)= { 1, 3, 6 } 41

what is dominator of 6
Note that a basic block is identified
by the first statement in the block.

Control Dependence

• X strictly dominates Y if X dominates Y and X!=Y

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
SDOM(6)= ? 42

what is strictly dominator of 6

Control Dependence

• X strictly dominates Y if X dominates Y and
X!=Y

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)SDOM(6)= { 1, 3 }
43

what is strictly dominator of 6

Control Dependence

X is the immediate dominator of Y if X is the
last dominator of Y along a path from Start to Y.

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)IDOM(6)=?
44

what is immediate dominator of 6

Control Dependence

X is the immediate dominator of Y if X is the
last dominator of Y along a path from Start to Y.

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)IDOM(6)= { 3 }
45

what is immediate dominator of 6

46

Control Dependence

Preliminary: X post dominates Yif

● every path from the Y to exit passesX

– strict, normal, & immediatedominance

Control Dependence

X post-dominates Y if every possible program path from
Y to End has to pass X. – Strict post-dominator,
immediate post-dominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5) s um = s um + i

6)print(sum)PDOM(5)= ? IPDOM(5)=?
47

Control Dependence

X post-dominates Y if every possible program path from
Y to End has to pass X. – Strict post-dominator,
immediate post-dominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum +
i 6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5) s um = s um + i

6)print(sum)PDOM(5)={3,5,6} IPDOM(5)=3
48

Control Dependence (Finally)

Yis control dependent on X i f
● Defniton 1:

● Defniton 2:

X

…

Y

● There exists a path from X to Y s.t. Y
post dominates every node between
X and Y.

● Y does not strictly post dominate X

49

X directly decides whether Yexecutes

Control Dependence

Intuitively, Y is control-dependent on X iff X directly
determines whether Y executes (statements inside one
branch of a predicate are usually control dependent on
the predicate)

X is not strictly post-dominated by Y

there exists a path from X to Y s.t. every node in the path other than X and Y is post-
dominated by Y

There is a path from X to End that does

not pass Y or X==Y

No such paths for nodes in a path

between X and Y.

Control Dependence

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5)sum = sum + i
6)print(sum)

What is CD(5)? CD(3)

1)sum = 0
2)i = 1

3) i f i < N

4)i = i + 1
5) s um = s um + i

6)print(sum)

51

Control Dependence

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5)sum = sum + i
6)print(sum)

What is CD(5)= {3 }

CD(3)= {3 }

1)sum = 0
2)i = 1

3) i f i < N

4)i = i + 1
5) s um = s um + i

6)print(sum)

● There exists a path from X to Y s.t. Y
post dominates every node between
X and Y.

● Y does not strictly post dominate X

52

Example

DOM (d) = ?

IDOM (d) or (g)= ?

SDOM (d) =?

PDOM(b)= ?

CD(b) =?

Example

DOM (d) = { e,a,c,d}

IDOM (d) or (g)= { c}

SDOM (d) = { e,a,c}

PDOM(b)= { h ,i}

CD(b) = {a}

Example

56

3)Program Dependence Graph(PDG)

Debugging: What may have caused a big?

Security: Can sensitive information leak?

Testing: How can I reach a statement? ...

4) Call Graph (Multigraph)

● Captures the composition of a program

–Nodes are functions

– Edges show possible calls foo()

bar() baz()

quux()bam()

57

●

foo()

bar() baz()

quux()bam()

foo calls bar & baz

58

4) Call Graph (Multigraph)

Captures the composition of a program

–Nodes are functions

– Edges show possible calls

●

foo()

bar() baz()

quux()bam()

foo calls bar & baz

59

bar callsbam

4) Call Graph (Multigraph)

Captures the composition of a program

–Nodes are functions

– Edges show possible calls

●

foo()

bar() baz()

bam() quux()

foo calls bar & baz

bar callsbam

What does this capture?
60

4) Call Graph (Multigraph)

A cycle in the graph indicates recursive procedure calls

Captures the composition of a program

–Nodes are functions

– Edges show possible calls

61

Execution Representations

● Program representations are static

▪ All possible program behaviours at once

▪ Usually projected onto the CFG

62

Execution Representations

●

● Execution representations are dynamic

• Only the behaviour of a single real execution

• Multiple instances of an instruction occur multiple

times

Program representations are static

▪ All possible program behaviours at once

▪ Usually projected onto the CFG

Control FlowTrace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

63

Control FlowTrace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

64

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

Control FlowTrace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

TTF 65

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
11 21 31 41 51 32 42 52 33 61

11 31 41 32 42 33 61

Control FlowTrace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
1 2 3 4 5 3 4 5 3 6

1 1 1 1 1 2 2 2 3 1

11 31 41 32 42 33 61
All Equivalent

TTF 66

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

67

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

4)i = i + 1
5)sum = sum + i

68

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

4)i = i + 1
5)sum = sum + i

69

Dynamic Dependence Graph

3)if i < N

Notably a bit difficult for a human to wade through.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

4)i = i + 1
5)sum = sum + i

70

Dynamic Dependence Graph

3)if i < N

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

4)i = i + 1
5)sum = sum + i

Notably a bit difcult for a human to wade through.

If only we could focus on the parts that interest us...
71

72

Execution Representations

Given these models, we can start to discuss
interesting transformations and analysis of real
programs.

Such as... slicing

